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Abstract

An ‘elastic—plastic-cracking’ (EPC) constitutive model was developed and incorporated into the commercial explicit
finite element package ABAQUS to analyze the fracture characteristics of brittle materials subjected to indentation loads.
The analysis indicated that the EPC model can capture the development of median cracks during the loading phase and
the development of lateral cracks during the unloading phase of the Vickers indentation cycle. The influence of material
properties on induced damage zone characteristics was analyzed by defining a non-dimensional brittleness parameter.
The model predictions of hardness as well as load—depth (P-#) relationship during an indentation cycle were found to
agree well with the experimental trends presented elsewhere in the literature. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Static indentation fracture mechanics approach has been widely used in the literature to evaluate the
fracture characteristics of brittle materials (Lawn et al., 1980; Chiang et al., 1982; Ponton and Rawlings,
1989a,b; Cook and Pharr, 1990; Zeng et al., 1996). In these investigations it has been well established that
radial and median cracks develop normal to the specimen surface during loading of the indenter and lateral
cracks develop parallel to the surface during unloading of the indenter as illustrated schematically in Fig. 1.
These investigations have also revealed the existence of a plastic region directly beneath the indenter (Cook
and Pharr, 1990). Plastic flow under hydrostatic conditions and compressive loads has been observed in
glasses and ceramics by various researchers (Marsh, 1964; McClintock and Argon, 1966; Schinker and
Doll, 1982; Spur et al., 1985; Subramanian and Keat, 1985; Inasaki, 1986; Subhash and Nemat-Nasser,
1993; Lankford et al., 1998). In the case of indentation experiments, the large compressive stresses which
occur directly beneath the indenter can induce plastic deformation during the loading phase and allow for
residual stress development during the unloading phase resulting in lateral cracking parallel to the surface.
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Fig. 1. Schematic of the crack systems that evolve during loading and unloading phases of a Vickers indentation cycle.

To describe this cracking process, several analytical models have been proposed in the literature (Lawn
et al., 1980; Chiang et al., 1982; Ahn et al., 1998). In these models, the elastic stress field due to a point load
on a semi-infinite space have been superposed on the plastic stress field due to an expanding cavity to
determine the stress required to cause the observed crack patterns. The expanding cavity model, originally
proposed by Yoffe (1982), is capable of capturing the residual stress fields upon unloading of the indenter
and the lateral crack development.

Numerical models using finite element (FE) methods have also been used to analyze the indentation
fracture characteristics of brittle materials (e.g. Liaw et al., 1984). Such models fail to capture the lateral
crack development upon unloading because of the lack of plastic zone beneath the indentation. Elastic—
plastic behavior of metals and ceramics under indentation loads have been extensively studied using FE
method by Giannakopoulos et al. (1994), Larsson et al. (1996), Zhang and Mahdi (1996), Zeng et al. (1996),
Care and Fischer-Cripps (1997), Fischer-Cripps (1997), and Marx and Balke (1997). However, these ana-
lyses mainly focussed on the stress field development and the prediction of crack’s initiation but not on the
crack evolution during the indentation process. Larsson (1995) presented a fictitious crack model based on
plastic localization and the subsequent discontinuity. Such a model, however, is difficult to incorporate into
a commercial FE package since discontinuity is not taken into account in most commercial packages. Chow
et al. (1993) proposed an incremental form of elastoplastic theory coupled with anisotropy damage model
for fracture evolution in brittle solids. This model has the advantages of a clear physical representation of
the brittle fracture and is relatively simple to incorporate into a FE code, but the damage evolution laws are
difficult to obtain.

In this paper, an ‘clastic—plastic-cracking’ (EPC) constitutive model is presented for isotropic brittle
materials. In the EPC model, the elastic—plastic response of a material is followed by a smeared cracking
process. The advantages of this model are that its parameters are easier to estimate or obtain from the
existing literature and it is easy to implement in commercial FE packages. In the current work, the model
has been successfully incorporated into the explicit ABAQUS FE code (version 5.8) (ABAQUS, 1998a,b) using
the user subroutine VUMAT (see ABAQUS user manual) to investigate the evolution of various crack
systems during loading and unloading phases of the Vickers indentation cycle.

2. Model formulation and implementation

The EPC constitutive model, illustrated in Fig. 2(a), consists of a traditional bilinear elastic—plastic
response OAB followed by a crack opening process BC along which the stress is released due to cracking.
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The unloading process from an arbitrary point along the path BC is denoted by DE. Since cracking results

in degradation of shear modulus, the slope of DE is considered to be lower than that of OA. The modulus

degradation occurs according to the current crack opening displacement (COD) as will be described later.
During plastic deformation, the Mises yield surface can be written as

f(a,oe):%S:Sfag(eg):O, (1)

where, S is the deviatoric stress matrix, o, is the equivalent yield stress given by
0. =Y+ E,¢e, (2)

where, Y is uniaxial yield stress, E, is plastic hardening modulus and ! is the equivalent plastic strain
defined as

)
ggz/ o inde 3)
0

The total strain rate is decomposed into elastic and plastic parts as

f= 4 4)
The stress rate is related to the elastic strain rate by Hooke’s law

6 = Mrace (&) + 2ué, (5)
where 4 and u are Lame constants 7 is the identity matrix. The plastic strain rate is given by the normality

condition
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0
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where, the scalar y can be determined with the commonly used elastic predictor, radial return algorithm.
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Fig. 2. (a) Generalized elastic—plastic-cracking constitutive model and (b) reduced model applied to brittle materials.
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The crack initiation is assumed to occur according to the Rankine criterion which states that a crack is
formed when the maximum principal tensile stress exceeds the tensile strength of a brittle material. To
account for the intensity of damage, a maximum three cracks are allowed to occur at any given material
point. When the maximum principal stress at a given material point exceeds the predefined fracture stress
ar, a mode I crack would appear in a direction normal to that of the maximum principal stress axis. At the
same material point, a second crack could occur only if the maximum tensile stress in the first crack’s plane
exceeds oy and a third crack could occur only if the tensile stress in a direction perpendicular to both of the
above crack normals exceeds a¢. The normals to the three cracks form a local orthogonal coordinate system
as indicated by the prime axes in Fig. 3. Once a crack appears, its direction does not change, and hence this
is called a ‘fixed orthogonal crack model’.

Let T be the transformation matrix from the global to the local coordinate system. The local stress
matrix ¢ and strain matrix e can be obtained from the global (applied) stress and strain values as

o tn N3 e en e
t= |t b6 In|= TO'TT e=|epn e exn| = TSTT. (7)
i3 s 1B ez exn €3

The normal stress #; across a given crack i will be updated when it exceeds the current fracture stress,
which is assumed to be a power law function of the COD u; given by

t1:0ff1 (1217273)7 (8)
where
fi= (1 —u;/ug)", 9)
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Fig. 3. Illustration of local and global coordinate systems.
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oy 1s the uniaxial fracture stress, u, and n are assumed to be material constants. In this paper, u, is assumed
to be the maximum COD and is taken to be 5 um. This value is consistent with the experimental obser-
vations of Yu and Kobayashi (1993) on ceramic matrix composites. The parameter n controls the shape of
the post-cracking (stress release) curve illustrated in Fig. 4 and is assumed to be parabolic in nature with
n=2.

The COD u; is difficult to obtain and hence we estimate #; by multiplying the cumulative cracking strain
e¢; by a characteristic length 7, i.e.,

u;, = he,- =h / de,-, (10)

where, / is the cube root of the corresponding element volume, and de; is the incremental strain between
two adjacent time steps during the cracking process at a given material point. Once COD is calculated for a
given crack, the total damage magnitude at a given material point is calculated and plotted by defining the
effective COD uy4 along the three orthogonal directions, i.e.,

ug = \jut + w3 + ui. (11)

The shear stresses on a crack plane will also be released to zero when the crack is opening. To simplify
the model, we assume the effective shear modulus G to be a function of the corresponding post-cracking
functions f; and f; (see Appendix A) in two orthogonal directions, i.e.,

G _ M
Jit1i =1

where p is the shear modulus of the uncracked material. Thus, in the local coordinate system, shear stress f;
can be expressed as a function of the sum of the elastic and cracking strains, i.e.,

(i £ ), (12)

':,ffi=(1 -ufu,)"
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Fig. 4. Illustration of post-cracking function f; versus normalized COD in local coordinate system.
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The above two equations are derived in the appendix. Note that the shear stress is not defined as a function
of cracking strain alone (as done in ABAQUS) and hence the shear modulus remains finite even when the
cracking strain tends to zero. Stresses will be rotated back to global system after they are updated in the
local system in order to calculate new strains and displacements in the global coordinate system.

It should be emphasized here that there is no macrocrack being tracked in our model. The macrocrack
can be viewed as the adjoining smeared microcrack system, i.e., a set of materials points forms the mac-
rocrack similar to the concept of crack growth described by the elastic-cracking model in ABAQUS (version
5.8) theory manual. However, the current model differs from the elastic-cracking model available in
ABAQUS in several ways. First, the introduction of plasticity allows for residual stress development and
lateral cracking upon unloading during the indentation process. Second, the crack strain is not isolated
from the total strain. In our model, stresses are assumed to relax to zero as per the relationship between
stress and estimated COD (Eqgs. (8)—(10) and (12)—(13)). Therefore, the model eliminates the need for de-
fining the relationship between stress and pure crack strain, which can cause over stiffening of the modulus
associated with cracking strain (as is currently done in ABAQUS) because the modulus tends to infinity as
the crack strain approaches to zero (see Eq. (A.1) in Appendix A). Third, the model considers permanent
strain associated with cracking even when the crack is completely closed. This is achieved by considering the
shear modulus degradation as per the Eq. (12).

3. Model verification

To verify the above EPC constitutive model, a uniaxial tension—compression test was performed on a
single element ceramic material. The properties of the material are presented in Table 1. Although the
above EPC model illustrated in Fig. 2(a), can capture a wide range of material behavior, when applied to
brittle materials (that have a yield stress greater than the fracture stress) the model is reduced to that shown
in Fig. 2(b). It has been well established that brittle materials exhibit only elastic response prior to cracking
during tensile loading and plastic deformation (without cracking) during compressive loading. Also, the
compressive yield stress is considerably greater than the tensile fracture stress. Accordingly, the compressive
yield strength is assumed to be 10 times greater than the tensile fracture stress. This assumption is valid for
typical brittle materials which exhibit fracture during tensile loading and plastic response during com-
pressive loading.

Fig. 5(a) illustrates the applied strain—time curve OABC to the test element. Fig. 5(b)—(d) are the results
obtained from the model. In Fig. 5(b), the stress—time plot reveals that although the strain increases linearly
up to the point A in Fig. 5(a), the stress increases linearly only up to the fracture stress of 0.5 GPa. This
response is indicated by the line OA’ in Fig. 5(b). Upon fracture, the stress is released along A’A as per the
post-cracking function f (Eq. (9)). The subsequent unloading (AB in Fig. 5(a)) results in a linear response
along AB'. Since the ceramic is assumed to reveal plastic response only during compression, once the
compressive stress exceeds the yield stress (5 GPa) the element exhibits plastic response with hardening
along B'B. Upon reversing the strain path (along BC in Fig. 5(a)), the stress follows the elastic response
along BC’, where, C' refers to the maximum permissible tensile stress (same as A in Fig. 5(b)) for the

Table 1
Material properties

o (glem?) E (GPa) v Y (GPa) E, (GPa) or (GPa)
3.2 320 0.24 5 3.2 0.5
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Fig. 5. Single element tension—compression test results. (a) Strain—time curve, (b) stress—time curve, (c) stress—strain curve and (d) crack

status versus time.

cracked material. Finally the material unloads along C'C. The combined stress—strain response of the
material is illustrated in Fig. 5(c). The crack status at various times during the loading and the unloading
cycle is indicated in Fig. 5(d). In the absence of a crack or whenever the crack is closed, the status is in-
dicated as zero and when the crack is open the status is indicated as one. Note that the crack assumes the
value one when the stress exceeds the current fracture stress and remains tensile between A’ and A” and
again when the stress is tensile between C” and C.

Since the above numerical experiment, based on the EPC constitutive model, seems to capture the basic
features of deformation in a brittle material subjected to a simple uniaxial loading, the model is applied to
investigate the fracture evolution characteristics of brittle materials subjected to Vickers indentation loads.
The relative influences of material properties on the evolution of damage zone size during Vickers inden-

tation are reported in the following section.

4. Vickers indentation

Cylindrical specimens of 5 mm in diameter and 2.5 mm in length were used for finite element discreti-
zation. Due to the symmetry of the problem, only one-fourth of the specimen was modeled as 5376
hexahedral solid elements. Symmetric boundary conditions were applied to the two end planes. The bot-
tom plane of the specimen was constrained in axial direction. To reduce computational time, a finer mesh
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(12.5 um) was adopted near the indentation region and a coarser mesh at distances farther away. To avoid
numerical instability that may arise due cracking and the associated behavior, the recommended time step
(automatically determined by ABAQuUs) was further reduced by 1/3rd. It was found that this time-step
always ensured convergence of the solution. The FE model is shown in Fig. 6. The Vickers indenter was
modeled as a rigid body with five shell elements. The whole indenter was modeled for the purpose of vi-
sualization. The indenter was allowed to penetrate the specimen axially at a constant acceleration as de-
scribed by the velocity versus time curve shown in Fig. 7, which results in a maximum indentation depth of
25 pm. The combined loading and unloading time duration was limited to 3 ps to minimize the compu-
tational time. The contact between the indenter and the specimen was assumed frictionless since friction is
found to have no significant influence in indentation events (Giannakopoulos et al., 1994). Average CPU
time for this problem was about 10 h on the SGI Origin 2000 supercomputer at University of Illinois at
Urbana-Champaign (UTUC).

4.1. Indentation fracture morphology

Fig. 8(a) and (b) illustrate the induced damage uy (see Eq. (11)) in a brittle material at a time corre-
sponding to the peak indentation depth (1.5 ps) and upon complete unloading (3.0 ps), respectively. Notice
that the model is capable of capturing the median crack (L,,) development during the loading phase and
lateral crack (L) development during unloading phase. Fig. 9 illustrates the evolution of this damage zone
size during an indentation cycle. It can be seen that the median crack develops only during the loading
phase reaching a maximum just before the loading phase ends and remains constant thereafter. On the
other hand, considerable lateral crack growth occurs during the unloading phase. These results are con-
sistent with the observations of evolved crack patterns on borosilicate, fused-silica and magnesium oxide by
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Fig. 6. Finite element discretization of the specimen and the indenter.
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Fig. 7. Indenter velocity versus time during the indentation process.

Cook and Pharr (1990). While interpreting the results in Fig. 9(b), it should be cautioned that the measured
lateral crack dimension (L;) includes those elements that lie directly beneath and in contact with the in-
denter and undergo severe deformation as the indentation depth increases. Therefore, the damage zone size
appeases to increase during the loading phase, because it is measured from the center of the indentation
imprint. However, during unloading damage occurs in those elements that are not contact with the indenter
and accordingly the lateral damage zone size grows as indicated in the figure.

Figs. 10(a) and (b) illustrate the contours of residual equivalent plastic strain at the end of the inden-
tation cycle and the evolution of plastic zone size (L,) during the indentation cycle, respectively. The plot in
Fig. 10(b) clearly reveals that the plastic zone develops during the loading phase only. The creation of this
plastic zone gives rise to the residual stress development during the unloading phase and leads to lateral
cracking. This point is better illustrated in Figs. 11(a) and (b) where, the contours of maximum principal
stress are plotted at the end of loading and unloading phases, respectively. Notice that compressive stresses
in excess of yield stress (—5 GPa) are developed in the central region of the indentation and tensile stresses
in excess of fracture stress (0.5 GPa) are developed along the periphery of this zone. On the other hand,
during the unloading phase, large tensile stresses in excess of fracture stress are induced closer to the surface
as well as in the regions surrounding the plastic zone resulting in lateral crack growth. Since the lateral
crack development occurs parallel to the loading surface and at 45° to the Vickers indentation diagonals
(see Fig. 1), it is informative to see the evolution of tensile stresses on planes closer to the surface and
perpendicular to the z-axis (axis of the cylindrical specimen). Fig. 12 illustrates the evolution of tensile
stresses on planes (Z = —1, —10, —20, —30 pum) at various times during the indentation cycle. Observation
of these stresses reveals that the tensile stresses rise dramatically just after the unloading phase begins (Fig.
12(c)) indicating the lateral crack development. Notice that the magnitude of the tensile stress exceeds the
fracture stress in these plots. This is because, cracking may have already occurred on planes other than z-
plane and our model allows for cracking only in directions perpendicular to the existing cracks and hence, it
is not necessary for stresses on z-planes to be less than the fracture stress. This is a major limitation of the
proposed ‘fixed orthogonal crack model’.
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Fig. 8. The evolved damage zone size (u4) at (a) the end of loading phase at 1.5 ps revealing the development of median cracks, and (b)
upon complete unloading at 3.0 ps revealing the development of lateral cracks.

4.2. P-h relationships

Depth sensing indentation techniques have been recently (Bhattacharya and Nix, 1988; Cook and Pharr,
1990; Giannakopoulos et al., 1994; Zeng et al., 1996) gaining popularity due to their ability to provide load
versus depth (P-h) curves which can be used to determine the mechanical properties such as hardness,
modulus and fracture toughness of brittle materials. Zeng et al. (1996) made a rigorous analysis of Vickers
indentation P-/ curves using FE method and compared them to the experimentally obtained response by
Cook and Pharr (1990). However, their analysis was limited to loading part of the curve and the unloading
portion was not fully analyzed. In the investigations of Vickers indentation by Giannakapoulos et al. (1994)
only compressive stress—strain response was utilized for FE model verification of P-4 relationship. This
approach may not be suitable for brittle materials because of the dominance of elastic deformation fol-
lowed by tensile cracking. Since the EPC model can explicitly account for tensile cracking and compressive
yielding, the analysis was extended to analyze the P—/ response of brittle materials by varying the relevant
material properties.

Figs. 13(a)—(c) reveal the computed P/ curves during the Vickers indentation cycle when one of the
material properties is varied. In these calculations the maximum depth of indentation is kept constant at
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Fig. 9. Evolution of median and lateral damage zones during the indentation cycle.

25 um. The analysis indicated that, as expected, an increase in Young’s modulus increases the load required
to achieve the same depth of penetration (Fig. 13(a)) but decreases the elastic recovery during the unloading
phase, consistent with the experimental trends observed by Zeng et al. (1996). Similarly, an increase in the
yield stress increases the load and the elastic recovery for the same depth of penetration as shown in Fig.
13(b). On the other hand, the fracture stress has almost no influence on the P—/ relationship as indicated in
Fig. 13(c). This is because P/ relationship is mostly an indication of elastic and plastic response of a
material and accordingly the model predicts little effect when the fracture stress is varied. This result also
agrees with Cook and Pharr’s observations (1990) on different glasses and ceramics. The above results are
summarized in Fig. 13(d) where it is noted that the elastic recovery is a non-linear function of Young’s
modulus and yield stress.

Although the above analysis clearly reflects the behavior of a ceramic when subjected to indentation
loads, it is more useful to find a linear relationship between the elastic recovery and a parameter that in-
cludes easy to obtain material properties such as, Young’s modulus and yield stress. Such a relationship can
assist in development of empirical relationships that are useful for assessment of material property influ-
ences under varying experimental conditions. Lawn and Howes (1981) found that elastic recovery is a
function of the ratio of hardness to elastic modulus. Our analysis revealed that elastic recovery is a linear
function of (Y/E)*” as shown in Fig. 14.

4.3. Hardness

Indentation hardness is one of most commonly used material properties by researchers and engineers.
For metals, static indentation hardness has been related to yield stress according to the Tabor’s (1951)
relationship H = 3Y (at 8% strain). Koeppel and Subhash (1999) found that the dynamic hardness and
dynamic yield stress (at a strain rate 2000/s) also follow a similar relationship when the indentation du-
rations were of the order of 100 us. For ceramics, however, such a relationship between hardness and yield
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Fig. 10. (a) Plastic zone size at 3.0 ps and (b) evolution of plastic zone size during the indentation cycle.

stress can not be realized due to the absence of significant plasticity (Anton and Subhash, 2000). Lankford
et al. (1998) rationalized the reasons for the lack of a direct correlations between the yield stress and
hardness in ceramics and found that before plasticity can initiate in ceramics, the stress concentration
associated with the dislocation generation can initiate microcracks. In the absence of well defined slip
planes for dislocation motion (or continued plasticity) fracture continues to propagate leading to complete
fragmentation of the ceramic.

Numerical analysis, on the other hand, can assist in identifying the relationship between hardness and
material properties of ceramics. Such relationships are useful for formulation of empirical models or
identification of difficult to obtain material properties. By systematic variation of material properties in the
EPC model, the following expression for Vickers hardness H was determined,

H = (EY*)'*. (14)

A plot of H versus (EY 3)1/ * reveals a linear relationship as presented in Fig. 15 where, the Vickers
hardness was calculated as per (Tabor, 1951)

H = 1.8544(P/d?), (15)
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where, P is the peak load of the indenter and d is the diagonal length of the contact impression in the FE
simulations.

Since yield stress for ceramics is difficult to obtain, we verify the validity of the above relationship (Eq.
(14)) by comparing the available data from the literature. In Table 2, the first two columns present the data
on Young’s modulus (E) and the hardness (H) of several brittle materials taken from Cook and Pharr
(1990). The next two columns, hardness H' and yield stress Y’, are the results obtained from the FE analysis
of indentation process by Zeng et al. (1996). Notice that there is a good agreement between the simulations
and the experiments on hardness values and therefore, the yield stress value Y is taken as the reference for
our analysis. Using E and H values from the first two columns (Cook and Pharr, 1990), yield stress values
are calculated from Eq. (14). Clearly, these values are in good agreement with the results of Zeng et al.
(1996) and therefore, the proposed relationship between hardness, Young’s modulus and yield stress seems
to be appropriate.

4.4. Brittleness

The concept of brittleness measure has been widely used in the literature for defining the brittle nature
and fracture characteristics of materials. Although the concept was originally developed to define the
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Fig. 12. Tensile stresses on planes z = —1, —10, —20, —30 um at (a) 1.5, (b) 1.8, (c) 2.1 and (d) 2.4 ps.

cleavage planes in single crystals, with the advent of fracture mechanics, several new parameters have been
included to characterize the brittleness of elastic solids. An in depth description of various definitions for
brittleness proposed in the literature were recently reviewed by Quinn and Quinn (1997). One of the widely
used definitions that is of relevance to this work is

EH, H, H,
K. Gic 2y’

(16)

where B is the brittleness parameter, H. is a measure of hardness related to work per unit volume of
deformation, Kjc is fracture toughness, Gic is critical strain energy release rate and y; is the fracture surface
energy. Note that brittleness is not directly related to hardness but includes deformation energy (Quinn and
Quinn, 1997). The roles of various parameters in the above definition of B are simple to comprehend.
When E and H, are high, the material is more resistant to deformation and hence the concentrated stresses
due to a point load are not easily distributed over a larger volume, thus leading to easy material frac-
ture. On the other hand, low fracture toughness or low fracture surface energy correspond to high brit-
tleness.
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Fig. 13. Influence of (a) Young’s modulus, (b) yield stress, and (c) fracture stress on P—/ curves during the Vickers indentation cycle. (d)
Plot of elastic recovery as a function of material properties.

The disadvantage of the above brittleness measure is that, parameters such as H. are not mechanistic
measures and cannot be directly used in computational codes. Therefore, in this work, a measure that
includes material properties such as £, Y and oy which can be easily obtained from simple tests, were used
to define the brittleness. The material properties in Table 1 were systematically varied over a wide range
(BOKEL560, 1<Y <9, 0.1 <0, <0.9 GPa) to investigate the size of the induced damage zone due to
indentation in brittle materials. The analysis indicated that although B is proportional to EY/¢?, when
median and lateral damage zone sizes were plotted against the parameter (EY/ G%)l/ 3 linear relationships
were noticed as illustrated in Fig. 16. This implies that the above quantity can reflect the brittleness of a
material and therefore, we define brittleness as

B=(EY/d})'. (17)

Unlike the definition of Quinn and Quinn (1997) for brittleness (Eq. (16)) which has the units of length~!,
the current definition in Eq. (17) yields a non-dimensional number. To better visualize the usefulness of this
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parameter, brittleness values for several ceramics are presented in Table 3 from the available data in the
literature (the value of yield stress for Eq. (17) was estimated from Eq. (16), i.e., Y = (H4/E)1/3). It is in-
teresting to see that although the collected data from various sources is dependent on test method, sample
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Table 2

Relationship between hardness, Young’s modulus and yield stress
Material E (GPa) H (GPa)* H' (GPa)® Y' (GPa)® Y = (H*/E)'? (GPa)
SLS-glass 70 5.9 5.84 2.8 2.59
AS-glass 91 6.6 6.40 3.2 2.75
Fused silica 72 6.3 6.32 3.0 2.80
BS-glass 89 6.5 6.30 3.0 2.72
AL Os 393 21.8 20.87 10.0 8.31
Y-ZrO, 220 17.8 16.74 8.1 7.70
MgO 305 7.7 7.72 3.7 2.26
MgALO, 293 13.1 12.90 6.3 4.65
SrTiOs 292 5.0 4.89 24 1.29
SrF, 88 1.4 1.37 0.4 0.35
CaF, 110 1.9 1.70 0.6 0.49

#Cook and Pharr (1990).
®Zeng et al. (1996).
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Fig. 16. Plot of damage zone size versus brittleness parameter (EY /a?)'".

preparation and sample size, the relative trends in brittleness observed for given set of ceramics are the same
in majority of situations. For ceramics that exhibit no plasticity, the brittleness value is considerably higher
than those ceramics that exhibit transformation plasticity (e.g. partially stabilized zirconia). Therefore, the
use of current definition (Eq. (17)) for brittleness seems to be reasonable.

5. Conclusions

An elastic—plastic-cracking model that accounts for tensile cracking and compressive yielding in brittle
materials is developed and successfully implemented in ABAQUS explicit FE code. The model was used to
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Table 3
Brittleness values for typical brittle materials

Ceramic ~ E(GPa) Y (MPa) o; (MPa) H(GPa) Ky (MPaym) [EY/d2]'? EH/K: (um™') Reference

PSZ 205 3557 350 9.8 8.5 18.1 27.8 -2
Si3Ny 310 5321 375 14.7 6.1 22.7 122.5 -
ALO; 390 5154 310 15.2 4.5 27.6 292.7 =
SiC 440 9356 335 24.5 5.2 332 398.7 —d
TiB, 550 9643 275 26.5 5.0 41.2 583.0 -
MgO 305 2259 97 7.7 1.2 41.8 1630.9 -
B,C 445 11349 155980%) 28.4 3.5 59.5 1031.7 -

4 Murray (1997).

> Murray (1997); Bauccio (1994); Shackelford (1994).

¢ ASM (1989); Bauccio (1994).

dMurray (1997); Bauccio (1994).

¢ Bauccio (1994); Shackelford (1994); Schneider (1991).

simulate the fracture characteristics of brittle materials subjected to Vickers indentation. The simulation
results revealed that the model is capable of capturing various crack systems that evolve in brittle materials
during a Vickers indentation cycle. Similar to the experimental observations, the model predicted evolution
of median cracks during the loading phase and lateral cracks during the unloading phase. This was achieved
through introduction of plasticity in the constitutive behavior. The brittle material was allowed to yield
during the loading phase thus creating an irreversible plastic zone beneath the indentation. Upon un-
loading, the mismatch in elastic and plastic deformation resulted in large tensile stress development thus
resulting in lateral crack development. This phenomenon could not be captured using other models where
plasticity was excluded. The introduction of plasticity can also remove stress intensity at sharp edges of the
Vickers indenter which otherwise can lead to numerical instability during computation.

The model predictions of P/ relationship agree well with the experimental trends on typical glasses and
ceramics. The elastic recovery during the unloading phase of the indentation cycle has been found to be
strongly influenced by the Young’s modulus and yield stress of a material, and independent of the fracture
stress. Finally, the relationship between hardness and material properties of ceramics has been analyzed. It
was found that a linear relationship exists between the hardness and the parameter (EY 3)1/ ‘.

The evolved damage zone size in a brittle material was analyzed by defining a non-dimensional brit-
tleness parameter (EY/ a%)l/ ?, which was found to correlate linearly with the induced damage zone size.
Since the fracture stress is squared in the denominator, it affects the crack size (or induced damage zone
size) more strongly than Young’s modulus and yield stress for similar increases. The above brittleness
parameter also seems to quantify the susceptibility of a ceramic to brittle cracking as evidenced by the
available data in the literature.

There are some limitations to the proposed EPC model. The major limitation of the model was that after
the first crack is initiated at a given material point, the ‘fixed orthogonal crack model’ does not allow cracks
to initiate in any direction other than the directions perpendicular to the first crack. Therefore, the model
allows the normal stress to exceed fracture stress in those directions other than the three crack normals.
This situation can be avoided by utilizing more complex models such as ‘multiple-plane cracking model’
(Espinosa and Brar, 1995). Another limitation is that, the available post processor in ABAQUS could not
show the directions of cracks. The measured damage zone sizes were interpreted as median and lateral
cracks solely based on the observed development of damage zones in a particular direction. Cook and Pharr
(1990) identified the crack systems that evolve due to indentation into five categories: lateral cracks, median
cracks, radial cracks, cone cracks and half-penny cracks. The EPC model is incapable of providing enough
information to precisely classify the observed damage zones into any of the above categories. Therefore, the
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use of the terms such as median and lateral cracks was solely subjective and should be interpreted cau-
tiously.
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Appendix A

Let 7° be the elastic shear strain and ¢ be the cracking shear strain. Then the shear stress T can be written
as

T=w* =Dy =G +°), (A.1)
where, , D and G are bulk shear moduli corresponding to elastic strain, cracking strain and combined
strain (y° 4 y°), respectively. From Eq. (A.1), we can write

1 1 1
E—; 5. (A-2)

Let G, be the local shear modulus when only crack 1 exists. Assume G can be written as u multiplied by
factor f1, i.e.,

Gy = ufi. (A.3)
From Egs. (A.2) and (A.3), we can obtain
o "
Dy ufi
Similarly, if only crack 2 exists, we can write
1 1 1
- A5
D, uf, n ( )
If both crack 1 and crack 2 exist, total crack shear strain 9{, can be written as
7 =71+ (A-6)
which yields the following relationship as per Eq. (A.1)
1 1 1
- =y A7
Dy Dy D, (A7)
Solving Egs. (A.2), (A.4), (A.5) and (A.7) for G (corresponding to Dy,) yields
1hf
G=——"""——. A8
Si+ /=Nt (A8)

Generalizing above equation, we have
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O ufif
7fi7+f/—fif/" (A.9)

By denoting the plastic shear strain )}, total strain can be written as

Vij = “/?,+vfj+“/}°,-- (A.10)
Hence, shear stress #; can be calculated as

tiy = Gy — i) = 2G(e; — efy). (A.11)
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